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Course Objectives 
The objectives of the course is to 

 work comfortably with functions of 

bounded variation 

 study the Riemann - 
StieltjesIntegration 

 study the convergence of infinite 
series, infinite product and uniform 
convergence 
and its interplay between various 
limiting operations. 
UNIT-1: Functions of Bounded 
Variation 18 hours 
Introduction - Properties of monotonic 
functions - Functions of bounded 
variation – Total 
variation - Additive property of total 
variation - Total variation on [a, x] as a 
function of x - 
Functions of bounded variation 
expressed as the difference of two 
increasing functions - 
Continuous functions of bounded 
variation. (Chapter - 6 : Sections 6.1 to 
6.8) 
UNIT-2: The Riemann - Stieltjes 
Integral 18 hours 
Introduction - Notation - The definition 
of the Riemann - Stieltjes integral – 
Linear 
Properties - Integration by parts- 
Change of variable in a Riemann - 
Stieltjes integral - 
Reduction to a Riemann Integral - 
Euler’s summation formula - 
Monotonically increasing 
integrators, Upper and lower integrals 
- Additive and linearity properties of 
upper and lower 

integrals - Riemann's condition. 
(Chapter - 7 : Sections 7.1 to 7.13) 
UNIT-3: The Riemann-Stieltjes 
Integral 18 hours 
Integrators of bounded variation-
Sufficient conditions for the existence 
of Riemann Stieltjes 
integrals-Necessary conditions for the 
existence of Riemann-Stieltjes 
integrals Mean value 
theorems for Riemann - Stieltjes 
integrals - The integrals as a function 
of the interval - 
Second fundamental theorem of 
integral calculus-Change of variable in 
a Riemann integral- 
Second Mean Value Theorem for 
Riemann integral-Riemann-Stieltjes 
integrals depending 
on a parameter-Differentiation under 
the integral sign. (Chapter - 7: 7.15 to 
7.24) 
UNIT-4: Infinite Series and Infinite 
Products 18 hours 
Absolute and conditional convergence 
- Dirichlet's test and Abel's test – 
Rearrangement of 
series - Riemann's theorem on 
conditionally convergent series. 
Double sequences - Double 
series - Rearrangement theorem for 
double series - A sufficient condition 
for equality of 
iterated series - Multiplication of series 
- Cesarosummability – Infinite 
products. 
(Chapter 8: Sections 8.8, 8.15, 8.17, 
8.18, 8.20, 8.21 to 8.26) 
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UNIT-5: Sequence of Functions 18 
hours 
Pointwise convergence of sequences 
of functions - Examples of sequences 
of real - valued 
functions - Definition of uniform 
convergence - Uniform convergence 
and continuity - The 



Cauchy condition for uniform 
convergence - Uniform convergence 
of infinite series of 
functions - Uniform convergence and 
Riemann - Stieltjes integration - 
Uniform convergence 
and differentiation - Sufficient 
condition for uniform convergence of a 
series - Mean 
convergence.(Chapter - 9 Sec 9.1 to 
9.6, 9.8, 9.10,9.11, 9.13) 
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Course Learning Outcomes 
After the successful completion of this 
course, the students will be able to: 

 understand the concept of functions 

of bounded variation. 

 Discuss the Riemann integration 
and to solve its related problems. 

 Analyse the sequences and series 
of function and their limits 

 Acquire the knowledge of Infinite 
Series and Infinite products 

 have knowledge of uniform 

convergence of sequence and series 


